GENERAL SYNTHESIS OF EXOMETHYLENE-₫-LACTONES VIA THE RETRO-DIELS-ALDER REACTION

Akıtamı Ichihara*, Noriki Nıo, and Sadao Sakamura
Department of Agricultural Chemistry, Faculty of Agriculture,
Hokkaıdo University, Sapporo 060, Japan

Summary. New synthetic methods of tulipalin A were deviced via the retro-Diels-Alder reaction and the generality was demonstrated by the synthesis of several \angle -methylene- \angle -alkyl- \angle -butyrolactones.

Previously, we have demonstrated the general synthesis of 2-alkyl-2-buteno-lactones via the retro-Diels-Alder reaction. We report herein a simple and general scheme for the synthesis of exomethylene- $\mbox{$V$}$ -alkyl- $\mbox{$V$}$ -butyrolactones via the retro-Diels-Alder reaction. The simplest congener, tulipalin A (1) $\mbox{$V$}$ which exerts antifungal and plant growth inhibitory activities $\mbox{$V$}$, was prepared by two methods as follows. The starting material, a methyl ester 2 was prepared according to previously reported procedure. Alkylation of the methyl ester 2 with ethylene dibromide in the presence of lithium diisopropylamide (LDA) in

tetrahydrofuran (THF) afforded a bromo ester $3^{(6)}$ in 74% yield. Treatment of the bromo ester 3 with 0.25N-NaOH in ethanol at refluxing and successive hydrolysis gave acidic product (3b), which was smoothly converted with p-toluenesulfonic acid in chloroform at room temperature into a lactone 4, white needles $^{(8)}$, mp 97.2~97.3°C, in 63% yield. The same lactone 4 was prepared from a diester 5, which was obtained by alkylation of 2 with methyl bromoacetate according to the previously described procedure. Reduction of the diester 5 with dissobutylaluminium hydride in toluene at -50°C afforded selectively an aldehyde 6 in 50.4% yield. Reduction of 6 with sodium borohydride in THF at room temperature

followed by hydrolysis with 1% NaOH in dioxane at room temperature yielded the same acid 3b, which was transformed to 4 by the same way described above in 55% yield. The retro-Diels-Alder reaction of 4 in benzene heating at 140°C for 30 min in a sealed tube afforded tulipalin A (1) in 70% yield. Spectroscopic data

Table 1.	The Retro-Diels-Alder	Reaction of I	Lactones $(4,7,8,9)$
----------	-----------------------	---------------	----------------------

Compounds	reaction temp.(°C)	reaction time(min)	products (yield%)	$_{\rm IR}(\gamma)_{\rm max}$	'H-NMR(S_{TMS}^{CC1} 4)
$\stackrel{4}{\sim} \stackrel{(mp97.2}{\sim} 97.3)$	140	30	1 (70) (oil)	1765,1668 810	2.99(2H),4.36(2H) 5.64,6.13(2H)
$ \frac{7}{\sim} \frac{(\text{mpl28.3})}{(\text{mpl28.7})} $	140	30	10 (60) (oil)	1765,1668 810	1.44(3H),2.53(1H) 3.13(1H),4.62(1H) 5.56,6.11(2H)
<u>8</u> (oil)	140	30	11 (54) (011)	1770,1670 815	0.98(3H),1.61(2H) 2.44(1H),2.49(1H) 4.24(1H),5.34, 5.90(2H)
9 (O11) ~	140	30	12 (80) (mp55.5 ~55.8)	1760,1665 815	2.68(1H),3.24(1H) 5.26(1H),5.41, 5.99(2H),7.10(5H)

of 1 were identical with those of reported sample. ²⁾ In order to confirm the generality of this method for the synthesis of exomethylene- $\mbox{$V$}$ -alkyl- $\mbox{$V$}$ -butyro-lactones, the aldehyde 6 was alkylated with three other Crignard reagents (CH₃MgI, CH₃CH₂MgBr, C₆H₅MgBr) to yield the lactones (7,8,9) as a mixture of diastereomers in 50~54% yield. The reaction conditions of the pyrolysis, yields of products and their spectroscopic data are summarized in Table 1.

References and Notes

- A. Ichihara, N. Nio, Y. Terayama, R. Kimura, S. Sakamura, Tetrahedron Letters, 3731 (1979). For other applications of natural products synthesis via the retro-Diels-Alder reaction, see: A. Ichihara, R. Kimura, S. Yamada, S. Sakamura, J. Am. Chem. Soc. in press.
- R. Tschesche, F. J. Kammerer, G. Wulff, F. Schonbeck, Tetrahedron Letters, 701 (1968)
- 3) Y. Iino, A. Tanaka, K. Yamashita, Agric. Biol. Chem., 36, 2505 (1972)
- 4) For an excellent review on the synthesis of α -methylene lactones see: P. A. Grieco, Synthesis, 67 (1975)
- 5) R. Kimura, A. Ichihara, S. Sakamura, Synthesis, 516 (1979)
- 6) Satisfactory spectroscopic data (MS, IR, 'H-NMR) were obtained for all new compounds.
- 7) The stereochemistry of 3 was deduced analogously from previous experiments.⁵⁾
- 8) Satisfactory elemental analyses were obtained for all crystalline compounds.

(Received in Japan 26 July 1980)